Draft

Standard Operating Procedure (SOP) for Installation of Sub-Slab Vapor Probes and Sampling Using EPA Method TO-15 to Support Vapor Intrusion Investigations

Dominic DiGiulio, Ph.D.
U.S. Environmental Protection Agency
Office of Research and Development
National Risk Management Research Laboratory
Ground-Water and Ecosystem Restoration Division
Ada, Oklahoma

phone: 580-436-8605 e-mail: digiulio.dominic@epa.gov

Background

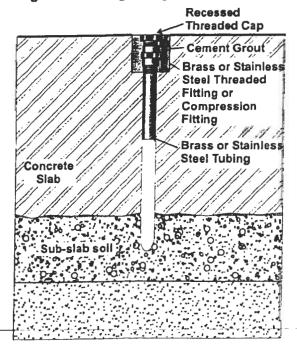
Vapor intrusion is defined as vapor phase migration of volatile organic and/or inorganic compounds into occupied buildings from underlying contaminated ground water and/or soil. Until recently, this transport pathway was not routinely considered in RCRA, CERCLA, or UST investigations. Therefore the number of buildings or homes where vapor intrusion has occurred or is occurring is undefined. However, considering the vast number of current and former industrial, commercial, and waste processing facilities in the United States capable of causing volatile organic or inorganic ground-water or soil contamination, contaminant exposure via vapor intrusion could pose a significant risk to the public. Also, consideration of this transport pathway may necessitate review of remedial decisions at RCRA and CERCLA sites as well as implementation of risk-reduction technologies at Brownsfield sites where future development and subsequent potential exposure may occur. EPA's Office of Solid Waste and Emergency Response (OSWER) recently (2002) developed guidance to facilitate assessment of vapor intrusion at sites regulated by RCRA and CERCLA where halogenated organic compounds constitute the bulk of risk to human health. EPA's Office of Underground Storage Tanks (OUST) is considering modifying this guidance to include underground storage tank sites where petroleum compounds primarily determine risk and biodegradation in subsurface media may be a dominant fate process.

The OSWER guidance recommends indoor air and sub-slab gas sampling in potentially affected buildings at sites containing elevated levels of soil-gas and ground-water contamination. To support the guidance and improve site-characterization and data interpretation methods to assess vapor intrusion, EPA's Office or Research and Development is developing a protocol for sub-slab gas sampling. When used in conjunction with indoor air, outdoor air, and soil gas and/or ground-water sampling, sub-slab gas sampling can be used to differentiate indoor and outdoor sources of volatile organic and/or inorganic compounds from compounds emanating from contaminated subsurface media. This information can then be used to assess the need for sub-slab depressurization or other risk-reduction technologies to reduce present or potential future indoor air contamination due to vapor intrusion.

Sub-Slab Vapor Probe Construction and Installation

- 1. Prior to drilling holes in a foundation or slab, contact local utility companies to identify and mark utilities coming into the building from the outside (e.g., gas, water, sewer, refrigerant, and electrical lines). Consult with a local electrician and plumber to identify the location of utilities inside the building.
- 2. Prior to fabrication of sub-slab vapor probes, drill a pilot hole to assess the thickness of a slab. As illustrated in Figure 1, use a rotary hammer drill to create a "shallow" (e.g., 2.5 cm or 1 in) "outer" hole (e.g., 2.2 cm or 7/8 in diameter) that partially penetrates the slab. Use a small portable vacuum cleaner to remove cuttings from the hole if penetration has not occurred. Removal of cuttings in this manner in a competent slab will not compromise sampling because of lack of pneumatic communication between sub-slab material and the source of vacuum.
- 3. Then use the rotary hammer drill to create a smaller diameter "inner" hole (e.g., 0.8 cm or 5/16 in) through the remainder of the slab and some depth (e.g., 7 to 8 cm or 3 in) into sub-slab material. Figure 2 illustrates the appearance of "inner" and "outer" holes. Drilling into sub-slab material will create an open cavity which will prevent obstruction of

probes during sampling by small pieces of gravel.


- 4. The basic design of a sub-slab vapor probe is illustrated in **Figure 3**. Once the thickness of the slab is known, tubing should be cut to ensure that probes "float" in the slab to avoid obstruction of the probe with sub-slab material. Construct sub-slab vapor probes from small diameter (e.g., 0.64 cm or 1/4 in OD x 0.46 cm or 0.18 in ID) chromatography grade 316 stainless steel tubing and stainless-steel compression to thread fittings (e.g., 0.64 cm or 1/4 in OD x 0.32 cm or 1/8 in NPT Swagelok female thread connectors) as illustrated in **Figure 4**. Use of stainless-steel materials to ensure that construction materials are not a source of VOCs.
- 5. Set sub-slab vapor probes in holes. As illustrated in Figure 5, the top of the probes should be completed flush with the slab and have recessed stainless steel or brass plugs so as not interfere with day-to-day use of buildings. Mix a quick-drying portland cement which expands upon drying (to ensure a tight seal) with water to form a slurry and inject or push into the annular space between the probe and outside of the "outer" hole. Allow cement to cure for at least 24 hours prior to sampling.
- 6. Install at least 3 sub-slab vapor probes in each residence. As illustrated in Figure 6, create a schematic identifying the location of each sub-slab probe.

Sub-Slab Sampling

- Connect dedicated a stainless-steel fitting and tubing (e.g., 1/8 in NPT to 1/4 in tube Swagelok fitting and 30 cm or 1 ft of 1/4 in I.D. Teflon tubing to a sub-slab vapor probe as illustrated in Figure 7. Use of dedicated fitting and tubing will avoid crosscontamination issues.
- Connect the Teflon tubing to 1/4" ID Masterflex (e.g., 1.4 in ID high performance Tygon LFL) tubing and a peristaltic pump and 1-L Tedlar bag as illustrated in Figure 8. Use of a peristaltic pump will ensure that sampled air does not circulate through a pump causing potential cross contamination and leakage.
- 3. Purge vapor probe by filling two dedicated 1-L Tedlar bags. The internal volume of subslab probes is insignificant (< 5 cm³). A purge volume of 2 L was chosen based on the assumption of a 0.64 cm (1/4") air space beneath a slab and an affected sample diameter of 0.61 m (2 ft).
- 4. Use a portable landfill gas meter to analyze for O₂, CO₂ and CH₄ in Tedlar bags as illustrated in **Figure 9**.
- 5. Collect sub-slab vapor samples in evacuated 10% or 100% certified 1-L Summa polished canisters and dedicated particulate filters as illustrated in Figure 10. Check vacuum in canisters prior to sampling. Sampling will cease when canister pressure reaches atmospheric pressure. Submit canisters to a commercial laboratory for analysis by EPA Method TO-15.
- Collect at least one duplicate sub-slab sample per building using dedicated stainlesssteel tubing as illustrated in Figure 11.

Figure 1. Drilling through a slab

Figure 3. General schematic of sub-slab vapor probe

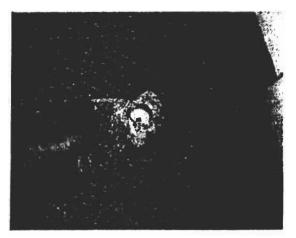
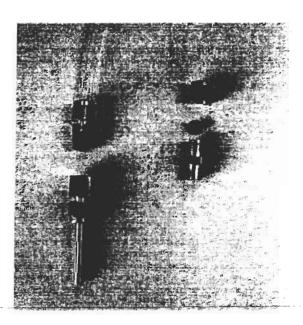



Figure 2. "inner and "outer

Figure 4. Stainless steel sub-slab vapor probe components

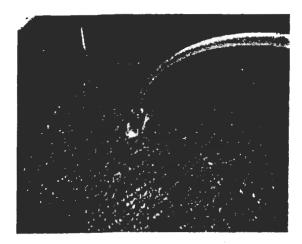


Figure 7. Compression fitting to probe

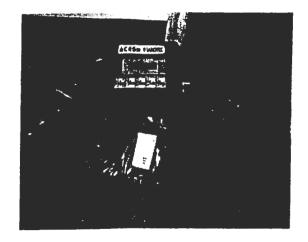


Figure 9. Analysis of O2, CO2, and CH4

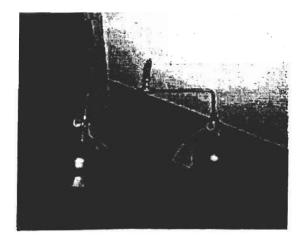


Figure 11. Collection of duplicate sample

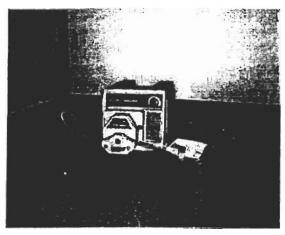


Figure 8. Purge prior to sampling

Figure 10. Sampling in 1-L evacuated canister for TO-15 analysis

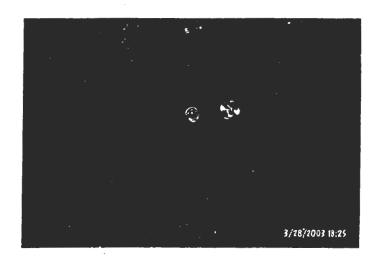


Figure 5. Competed vapor probe installation

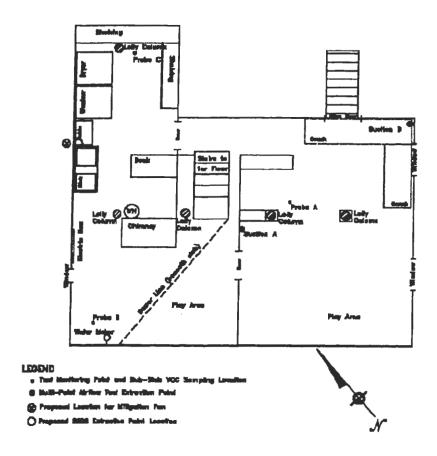


Figure 6. Schematic illustration location of vapor probes in a basement